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Abstract

The anti-plane shearing problem on a system of finite faults under a slip-dependent friction in a linear elastic domain

is considered. Using a Newmark method for the time discretization of the problem, we have obtained an elliptic

variational inequality at each time step. An upper bound for the time step size, which is not a CFL condition, is deduced

from the solution uniqueness criterion using the first eigenvalue of the tangent problem. Finite element form of the

variational inequality is solved by a Schwarz method assuming that the inner nodes of the domain lie in one subdomain

and the nodes on the fault lie in other subdomains. Two decompositions of the domain are analyzed, one made up of

two subdomains and another one with three subdomains. Numerical experiments are performed to illustrate conver-

gence for a single time step (convergence of the Schwarz algorithm, influence of the mesh size, influence of the time

step), convergence in time (instability capturing, energy dissipation, optimal time step) and an application to a relevant

physical problem (interacting parallel fault segments).
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1. Introduction

Since no direct observation is available, numerical modeling is an important tool in the understanding
of earthquake phenomena. In the last decade significant progress was achieved in improving inversion

techniques as well as in developing numerical methods for direct computations.
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In numerical modeling of the earthquake source dynamics (initiation, rupture propagation and arrest)

we need accurate and robust numerical schemes. Two methods have been widely used: boundary integral

methods [5,14,18,19,25,27] and finite difference methods [13,35,43,52]. Finite element models [1,4,44] are
much fewer in earthquake rupture simulation, because they are more difficult to implement than finite

differences, and because low order schemes can lead to undesirable dissipation. However, they have been

more and more used because they can handle strong heterogeneities as well as complex geometries [45,46].

A special case of finite elements, called spectral elements (see [12]), combines high order precision and

geometrical flexibility. The papers [38–40] validated the use of spectral elements for 3D wave propagation.

Applications in the propagation of seismic rupture are investigated in [2]. Also, even if it does not deal with

rupture propagation, we have to mention here the model of [10,11,50], built for the propagation of 3D

elastic waves in a medium containing (stress free) cracks: it is based on a new class of mixed finite elements
and it uses the fictitious domain method to couple a regular mesh in the medium and an irregular mesh on

the cracks, using Lagrange multipliers.

The earthquake nucleation (or initiation) phase, preceding the dynamic rupture, has been recently

pointed out by detailed seismological observations [22,34], laboratory experiments on friction [47] and by

theoretical studies [3,15,21,35,51]. Since the initiation phase is characterized by an unstable evolution with

an exponential growth in time, the behavior of the solution was described, as it is here, by its ‘‘dominant

part’’ through an eigenvalue analysis [15,20,21,23,24]. Only few numerical schemes can capture this un-

stable behavior of the solution during the initiation phase. One of them was proposed in [35], for the anti-
plane problem, and developed thereafter in [23,24] for the in-plane and 3D problems, but the use of a finite

difference method restricts the applications on the planar fault geometries.

The aim of this paper is to propose a numerical scheme able to describe the initiation and the rupture

propagation on a fault system with a complex geometry and to handle heterogeneous material and fric-

tional properties. The duration of the initiation phase may be very large [15,21,35] and it may not scale with

the characteristic time of the wave equation (i.e. characteristic length/wave speed). That is why we need an

implicit time discretization scheme with a much larger time step than the critical CFL time step. The use of

an implicit scheme for the wave equation with frictional type conditions on the faults will imply that we
have to solve a nonlinear problem, given by a variational inequality, at each time step. We propose in this

paper a domain decomposition method for the solution of this variational inequality.

The domain decomposition methods have received considerable attention in the past decades, and the

literature on them is too large to survey here. We can refer, for instance, to the papers in the proceedings of

the 15 annual conferences on domain decomposition methods starting in 1988 with [28]. Also, we can refer

to the bibliography given in the papers [16,41,54], or that in the books [48,49]. The variational inequality in

our problem comes from the constraint minimization over a convex set of a non-quadratic functional.

Besides, the convex set is not of an obstacle type, for which most of the convergence results are given in the
literature. The domain decomposition method we propose to solve our problem is of the multiplicative

Schwarz type, and it has been introduced in [6], where the convergence has been proved for the minimi-

zation of quadratic functionals. This method has been extended to one- and two-level methods in [8]. Also,

its convergence for the constraint minimization of the non-quadratic convex functionals in a reflexive

Banach space is proved in [7]. Using the general convergence theorem in [7], error estimates are given in [9]

for the one-, two- and multilevel methods, when they are applied to the solution of the variational in-

equalities coming from the constraint minimization of the non-quadratic functionals over enough general

convex sets.
Let us give here the sketch of the paper. In Section 2 we consider the anti-plane shearing on a system of

finite faults under a slip-dependent friction in a linear elastic domain. The system describes a shear crack

propagating on a pre-existing surface of weakness in a linearly elastic solid, with slip driven by a stress

drop. A Newmark method for the time discretization is used to deduce an elliptic variational inequality at

each time step. In order to have uniqueness of this nonlinear problem, an upper bound of the time step size
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is deduced using the first eigenvalue of the tangent problem. In all the physical applications we have

considered, this restriction, which is not a CFL-type condition, gives large critical time steps (10 up to 100

times larger than the critical CFL time step). On the basis of a finite element space discretization we present
the Schwarz algorithm we use to solve the variational inequality. Using an overlapping decomposition with

two or three subdomains, we solve in each iteration an algebraic linear system corresponding to the inner

nodes of the domain, and some small nonlinear problems, of two unknowns, corresponding to the nodes on

the fault. Numerical results, presented in Section 5, include convergence tests for a single time step (in-

fluence of the mesh size, convergence of the Schwarz algorithm, influence of the time step), convergence in

time (instability capturing, energy dissipation, optimal time step) and an application to a relevant physical

problem (interacting parallel fault segments).
2. Problem statement

Consider, as in [20,21,51], the anti-plane shearing on a system of finite faults under a slip-dependent

friction in a linear elastic domain, to describe a shear crack propagating on a pre-existing surface of

weakness with slip driven by a stress drop. Let X � R2 be a domain, not necessarily bounded, containing a

finite number of cuts. Its boundary oX is supposed to be smooth and divided into two disjoint parts: the

exterior boundary Cd ¼ o�X and the internal one C composed of Nf bounded connected arcs Ci
f ,

i ¼ 1; . . . ;Nf , called cracks or faults. We suppose that the displacement field u ¼ ðu1; u2; u3Þ is 0 in directions

Ox1 and Ox2 and that u3 does not depend on x3. The displacement is therefore denoted simply by

w ¼ wðt; x1; x2Þ. A schematic representation of the antiplane shearing of a single finite fault lying on Ox1 is
plotted in Fig. 1. The elastic medium has the shear rigidity G, the density q and the shear velocity

c ¼
ffiffiffiffiffiffiffiffiffi
G=q

p
with the following regularity:

q;G 2 L1ðXÞ; qðxÞP q0 > 0; GðxÞPG0 > 0 a:e: x 2 X:

The non-vanishing shear stress components are r31 ¼ s11 þ Go1w, r32 ¼ s12 þ Go2w, and r11 ¼ r22 ¼ �S,
where s1 is the pre-stress and S > 0 is the normal stress on the faults, such that

S; s11 ; s
1
2 2 C0ð�XÞ:
w(t,x
,0+)w(t,x

,0)

x

y

z
w(t,x

,y)

Fig. 1. The antiplane shearing of one finite fault.
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On C we denote by [ ] the jump across C (i.e. ½w� ¼ wþ � w�) and by on ¼ r � n the corresponding normal

derivative with the unit normal n outwards the positive side. We suppose that we can choose the orientation

of the unit normal n of each connected fault (cut) of C such that

qðxÞ ¼ s11 ðxÞn1ðxÞ þ s12 ðxÞn2ðxÞ6 q0 < 0 a:e: x 2 C: ð1Þ

This is the case in many concrete applications, when the pre-stress s1 gives a dominant direction of slip.

On the contact zone C we have

½Gonw� ¼ 0;

and we consider a slip-dependent friction law. The friction force is depending on the slip ½w� through a

friction coefficient l ¼ lð½w�Þ which is multiplied by the normal stress S:

Gonwþ q ¼ �lðj½wðtÞ�jÞS signðot½w�Þ if ot½w� 6¼ 0; ð2Þ
jGonwþ qj6 lðj½w�jÞS if ot½w� ¼ 0: ð3Þ

The above equations assert that the tangential (frictional) stress is bounded by the normal stress S mul-

tiplied by the value of the friction coefficient l. If such a limit is not attained sliding does not occur.

Otherwise the friction stress is opposed to the slip rate ot½w� and its absolute value depends on the slip

through l. A generic representation of the nonlinear dependence of friction coefficient l with respect to the

relative slip is shown in Fig. 2.

Concerning the regularity of l : C� Rþ ! R, we suppose that the friction coefficient is a Lipschitz

function, with respect to the slip, and let f be

f ðx; sÞ ¼ SðxÞlðx; sÞ þ qðxÞ:

We suppose that there exists L > 0, such that

jf ðx; s1Þ � f ðx; s2Þj6 Ljs1 � s2j ð4Þ

a.e. x 2 C, and for all s1; s2 2 Rþ.
Fig. 2. A generic representation of the nonlinear dependence of friction coefficient l with respect to the relative slip and its piecewise

linear approximation.
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In our numerical experiments, we used a piecewise linear friction law (see also Fig. 2) of the following

form:

lðx; uÞ ¼ lsðxÞ � lsðxÞ�ldðxÞ
2DcðxÞ u if u6 2DcðxÞ;

lðx; uÞ ¼ ldðxÞ if u > 2DcðxÞ;
ð5Þ

where u is the relative slip, ls and ld (ls > ld) are the static and dynamic friction coefficients, and Dc is the

critical slip. This piecewise linear function is a reasonable approximation of the experimental observations

reported by [47], and has been quite frequentely used. If we put

L ¼ sup
x2C

SðxÞ lsðxÞ � ldðxÞ
2DcðxÞ

; ð6Þ

then (4) holds. The numerical scheme proposed in this paper is designed to handle any arbitrary dependence
of the friction force on the slip. Though the numerical experiments presented at the end of the paper are

performed using the piecewise linear model, the algorithm does not use the linearity of the weakening law.

Since we are looking for dynamic perturbations of the equilibrium w � 0, and since the slip direction is

given by s1 and q (see (1)), we can restrict the above friction law to the case of non-negative slip rate

ot½w�P 0. Since the initial slip can also be supposed non-negative, we have ½wðtÞ�P 0 also. These are usual

assumptions in the geophysical approach of earthquake source dynamics.

Using the above assumptions, the momentum balance law divr ¼ qottu and the boundary conditions, we

obtain the following dynamic problem (DP).
Find w : Rþ � X ! R, solution of the wave equation

qottwðtÞ ¼ divðGrwðtÞÞ in X; ð7Þ

with boundary conditions of the Signorini type

wðtÞ ¼ 0 on Cd; ½GonwðtÞ� ¼ 0; ½otwðtÞ�P 0 on C ð8Þ
GonwðtÞ þ f ð½wðtÞ�ÞP 0; ½otwðtÞ� GonwðtÞð þ f ð½wðtÞ�ÞÞ ¼ 0 on C: ð9Þ

The initial conditions are

wð0Þ ¼ w0; otwð0Þ ¼ w1 in X: ð10Þ

Any solution of the above problem satisfies the following variational problem (VP).

Find w : ½0; T � ! V such that

otwðtÞ 2 Wþ;

Z
X
qottwðtÞðv� otwðtÞÞdxþ

Z
X
GrwðtÞ � rðv� otwðtÞÞdx

þ
Z
C
f ð½wðtÞ�Þð½v� � ½otwðtÞ�ÞdrP 0 8v 2 Wþ; ð11Þ

where

W ¼ fv 2 H 1ðXÞ : v ¼ 0 on Cdg; Wþ ¼ fv 2 W : ½v�P 0 on Cg: ð12Þ

The main difficulty in the study of the above evolution variational inequality is the non-monotone de-

pendence of f with respect to the slip ½w�. The existence of a solution w having the regularity

w 2 W 1;1ð0; T ;W Þ \ W 2;1ð0; T ; L2ðXÞÞ ð13Þ

can be deduced for two-dimensional bounded domains using the method developed in [36].
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3. Elliptic problem of each time step

Explicit time discretization schemes require a time step smaller than the critical CFL time step which is
of the order of ratio spatial mesh size/wave velocity. The duration of the initiation phase may be very large

[15,21,35] and it may not scale with the ratio characteristic length/wave speed, which means that the

threshold on the time step size may be too small to allow computations of the initiation phase. That is why

we need an implicit time discretization scheme allowing much larger values than the critical CFL time step.

We consider here the Newmark method, with parameters b ¼ 1=4 and c ¼ 1=2 (see for instance [26]), for

the time discretization of the dynamic problem (10,11). To this end, let Dt > 0 be the time step, N the

maximum number of steps, and T ¼ NDt. We denote by wn; _wn; €wn the discretization of the solution at time

t ¼ nDt, i.e. wn � wðnDtÞ; _wn � otwðnDtÞ; €wn � ottwðnDtÞ for all 06 n6N . The initial conditions (10) become

w0 ¼ w0; _w0 ¼ w1; €w0 ¼ q�1 divðGrw0Þ; ð14Þ

which is the starting point of a recursive problem. Suppose that we have constructed the solution up to

t ¼ nDt, i.e. we have wk; _wk; €wk for all k6 n. In the Newmark method, the numerical solution wnþ1; _wnþ1; €wnþ1

of (11) at t ¼ ðnþ 1ÞDt is obtained from

wnþ1 ¼ wn þ Dt _wn þ ðDtÞ2

4
ð€wnþ1 þ €wnÞ; _wnþ1 ¼ _wn þ Dt

2
ð€wnþ1 þ €wnÞ; ð15Þ
_wnþ1 2 Wþ;

Z
X
q€wnþ1ðv� _wnþ1Þdxþ

Z
X
Grwnþ1 � rðv� _wnþ1Þdx

þ
Z
C
f ð½wnþ1�Þð½v� � ½ _wnþ1�ÞdrP 0 8v 2 Wþ: ð16Þ

In terms of the velocity, the above problem can be written as the following variational inequality: find
_wnþ1 2 Wþ such thatZ

X
q _wnþ1ðv� _wnþ1Þdxþ ðDtÞ2

4

Z
X
Gr _wnþ1 � rðv� _wnþ1Þdx

þ
Z
C
hnð½ _wnþ1�Þð½v� � ½ _wnþ1�ÞdrP Fnðv� _wnþ1Þ 8v 2 Wþ; ð17Þ

where hn and Fn are given by

hnðx; sÞ ¼ Dt
2
f ðx; ½wn�ðxÞ þ ð½ _wn�ðxÞ þ sÞDt=2Þ

FnðvÞ ¼
R
X q _wn þ Dt

2
€wn

� �
vdx� Dt

2

R
X Gr wn þ Dt

2
_wn

� �
� rvdx:

ð18Þ

If _wnþ1 is obtained, then one can deduce wnþ1 and €wnþ1 through

wnþ1 ¼ wn þ Dt
2
ð _wn þ _wnþ1Þ; €wnþ1 ¼ 2

_wnþ1 � _wn

Dt
� €wn: ð19Þ

The use of an implicit scheme for the wave equation with frictional type conditions on the faults will imply

that we have to solve a nonlinear problem, given by a variational inequality, at each time step.

Let us put
c ¼ ðDtÞ2

4
G ð20Þ
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and let us introduce the energy function Jn : W ! R given by

JnðvÞ ¼
1

2

Z
X
qv2 dxþ 1

2

Z
X
cjrvj2 dxþ

Z
C
Hnð½v�Þdr� FnðvÞ; ð21Þ

where Hn, which is the antiderivative of hn, represents the density of energy dissipated on the fault during
the time interval ½nDt; ðnþ 1ÞDt� (see Fig. 2 for a simple diagram).

Hnðx; uÞ ¼
Z u

0

hnðx; sÞds a:e: x 2 C 8uP 0:

Writing unþ1 ¼ _wnþ1, problem (17) becomes the following elliptic variational problem: find unþ1 2 Wþ such

that Z
X
quðv� unþ1Þdxþ

Z
X
crunþ1 � rðv� unþ1Þdxþ

Z
C
hnð½unþ1�Þð½v� � ½unþ1�ÞdrP Fnðv� unþ1Þ ð22Þ

for all v 2 Wþ.

The following result can be obtained using the same technique as in [37]:
Theorem 3.1. If unþ1 2 Wþ is a local minimum for Jn, then unþ1 is a solution of (22). Moreover there exists at

least a global minimum for Jn, i.e. there exists unþ1 2 Wþ such that

Jnðunþ1Þ6 JnðvÞ 8v 2 Wþ: ð23Þ

Let us analyze here what are the conditions to be imposed on the parameters Dt, G, q and osf , such that

the functional Jn would be strongly coercive. On this property will depend the convergence of the Schwarz

algorithm described in Section 4. To this end, we have to consider the following eigenvalue problem

connected to (17): find U 2 W , U 6¼ 0 and k2 2 R such that

divðGrUÞ ¼ k2qU in X; ð24Þ
U ¼ 0 on Cd; ½GonU� ¼ 0; GonU ¼ g½U� on C; ð25Þ

where gðxÞ ¼ � inf s2Rþ osf ðx; sÞ ¼ �SðxÞ inf s2Rþ oslðx; sÞ.
The above eigenvalue problem played a key role in the study of the nucleation phase of earthquakes (see

[3,15,21,51,53]). Through the first eigenvalue, important physical properties (characteristic time, critical

fault length, etc.) were deduced.

The variational formulation of the eigenvalue problem is

U 2 W ;

Z
X
GrU � rvdxþ k2

Z
X
qUvdx ¼

Z
Cf

g½U�½v�dx 8v 2 W ; ð26Þ

and we recall from [20] the following result:
Theorem 3.2. Let X be bounded:

(i) The eigenvalues and eigenfunctions of (24), (25) consist of a sequence ðk2n;UnÞn2N with k20 P k21 P . . . and
k2n ! �1.

(ii) Let b > 0 and let us denote by k20ðbÞ the first eigenvalue of (24), (25) in which g was replaced by bg. Then
b ! k20ðbÞ is a convex increasing function and the following inequality holds:
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Z
X
Gjrvj2 dxþ k20ðbÞ

Z
X
qv2 dxP b

Z
C
g½v�2 dx 8v 2 W : ð27Þ

Note that, in general, k20 is not negative, hence there exist at most a finite number of positive
eigenvalues.

Theorem 3.3. Let X be bounded:
(i) J 0

n is a Lipschitz functional, i.e. there exists a real constant b such that

kðJ 0
nðv1Þ � J 0

nðv2ÞÞkW 0 6 bkv1 � v2kW : ð28Þ

(ii) If

ðDtÞ2

4
k20 < 1; ð29Þ

where k20 is given by the above theorem, then Jn is an uniformly convex functional, i.e. there exists a > 0 such

that

J 0
nðv1Þðv1 � v2Þ � J 0

nðv2Þðv1 � v2ÞP akv1 � v2k2W 8v1; v2 2 W ; ð30Þ

and (23) has a unique solution which is also the unique solution of (17), i.e. unþ1 ¼ _wnþ1.

The above condition (29) on the time step Dt is not a CFL-type condition. If the process is stable, i.e.

k20 6 0, then there is no condition (in terms of convergence and stability) on the time step. If the process is

unstable, i.e. k20 > 0, then (29), which is equivalent to

Dt < Dtcr ¼:
2

k0

is just a convergence criterion for the domain decomposition method which solves the non-quadratic

minimization problem at each time step. In all the physical applications we have considered, the

critical time step Dtcr was found to be very large (10 up to 100 times larger than the critical CFL time

step).

Proof. For v1; v2; v 2 W , we get that

jðJ 0
nðv1Þ � J 0

nðv2ÞÞðvÞj6
Z
X
jqjjv1 � v2jjvj þ

Z
X
jcjjrðv1 � v2Þ � rvj þ

Z
C
jhnð½v1�Þ � hnð½v2�Þjj½v�j

6 kqk1kv1 � v2kL2ðXÞkvkL2ðXÞ þ kck1kv1 � v2kW kvkW þ lhk½v1 � v2�kL2ðCÞk½v�kL2ðCÞ;

where lh ¼ LðDt=2Þ2 is the Lipschitz constant of hn. Therefore, using the continuity of the trace operator
and Eqs. (4), (18) and (20), there exists a real constant b:

b :¼ CL
Dt
2

� �2

þmax
Dt
2

� �2

kGk1; kqk1

( )
ð31Þ

(here C is a constant) such that (28) holds. From the expression of g, we get

ðhnðx; s1Þ � hnðx; s2ÞÞðs1 � s2ÞP � gðxÞjs1 � s2j2 8s1; s2 P 0 a:e: x 2 C; ð32Þ
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where gðxÞ ¼ gðxÞðDt=2Þ2. After some computations, we obtain from the above inequality

J 0
nðv1Þðv1 � v2Þ � J 0

nðv2Þðv1 � v2Þ ¼
Z
X
cjrðv1 � v2Þj2 dxþ

Z
X
qðv1 � v2Þ2 dx

þ
Z
C
ðhnð½v1�Þ � hnð½v2�ÞÞ½v1 � v2�dx

P
Z
X
cjrðv1 � v2Þj2 dxþ

Z
X
qðv1 � v2Þ2 dx�

Z
C
g½v1 � v2�2 dx;

and, from (27), we get

ðJ 0
nðv1Þ � J 0

nðv2ÞÞðv1 � v2ÞP
b� 1

b

Z
X
cjrðv1 � v2Þj2 dxþ

b� k20ðbÞðDt=2Þ
2

b

Z
X
qðv1 � v2Þ2 dx:

Bearing in mind that b ! k20ðbÞ is an increasing function, from (29) we get that there exists �b > 1 such that

k20ð�bÞðDt=2Þ
2
< 1, and (30) follows with

a ¼
�b� 1
�b

min
Dt
2

� �2

G0; q0

( )
: ð33Þ

Since the functional Jn is convex, problems (23) and (17) are equivalent. The uniqueness of unþ1 comes from
the strict convexity of the functional Jn. �
4. Domain decomposition method

We describe in the following the domain decomposition method we have applied to solve variational

inequality (22). We point out that this inequality is equivalent with the constraint minimization problem

(23), in which the functional J is not quadratic. Moreover, the convex set of the constraints, Wþ, is not of
obstacle type for which most of the convergence results for the domain decomposition methods are ob-

tained in the literature.

4.1. General presentation

Over the domain X of problem (22), we consider a regular triangular mesh Th (see [17]), of mesh size h,
such that the nodes on the sides of the fault C can be associated two by two having the same coordinates

(one of them being located on a side of C and the other one on the other side). We shall denote in the

following by xi, i ¼ 1; . . . ; nd the interior nodes of Th in X, and by xþi and x�i , i ¼ 1; . . . ; nf , the pairs of

nodes on the two sides of C having the same coordinates. We use the linear finite element spaces, and the

functions in the nodal basis associated with the nodes ofTh will be denoted by ui, i ¼ 1; . . . ; nd, and uþ
i and

u�
i , i ¼ 1; . . . ; nf . Consequently, these basis functions will be piecewise linear, continuous functions such

that: uiðxiÞ ¼ 1 and ui ¼ 0 at the other mesh nodes of Th, uþ
i ðxþi Þ ¼ 1 and uþ

i ¼ 0 at the other mesh nodes

of Th, and, finally, u�
i ðx�i Þ ¼ 1 and u�

i ¼ 0 at the other mesh nodes of Th.

We shall use two decompositions of the domain X. The first decomposition has three subdomains, X1, X2

and X3, and the second one has only two subdomains, X1 and X2. The subdomain X1 is the same in the two

decompositions and it contains the inner nodes of the domain, xi, i ¼ 1; . . . ; nd. The nodes xþi and x�i ,
i ¼ 1; . . . ; nf , lie either in the subdomains X2 and X3, for the first decomposition, or in the subdomain X2,

for the second one. To construct these subdomains we introduce other domains, denoted Oi, which will be

subdomains of X1, X2 and X3. First, we write O1 ¼ X, and we see that xi 2 O1, i ¼ 1; . . . ; nd. Then, for each



496 L. Badea et al. / Journal of Computational Physics 201 (2004) 487–510
pair of nodes xþi and x�i on C, we consider the subdomains Oiþ1, i ¼ 1; . . . ; nf , which are obtained by the

union of the triangles which have a vertex at either the node xþi or the node x�i on C (see Fig. 3). Conse-

quently, Oiþ1 ¼ Intðsuppuþ
i Þ [ Intðsuppu�

i Þ, i ¼ 1; . . . ; nf .
Now, we introduce the first decomposition with three subdomains. In the well known coloring procedure

of the subdomains, we mark with the same color the subdomains which do not intersect each other. It is

easy to see the subdomains fOig16 i6M , M ¼ nf þ 1, can be marked with three colors: the first color cor-

responds to O1, and the other two colors are used for Oi, i ¼ 2; . . . ; nf þ 1. Since the solutions on the

subdomains having the same color can be simultaneously found, we associate to each color one subdomain:

the union of the subdomains Oj having the color i will be denoted by Xi, i.e., X1 ¼ O1, and X2 and X3 are

unions of subdomains Oi, i ¼ 2; . . . ;M , corresponding to the second and third color, respectively. In Fig. 3,

for instance, where the subdomains Oi, i ¼ 2; . . . ;M are numbered from the left end point of the fault C to
the right one, we can take X2 ¼ O2 [ O4 [ O6 [ � � � and X3 ¼ O3 [ O5 [ O7 [ � � � In this way, we have ob-

tained a new overlapping decomposition

X ¼
[3
i¼1

Xi: ð34Þ

The second decomposition of the domain X we use has only two subdomains which are written as

X1 ¼ O1 and X2 ¼
[nf
i¼1

Oiþ1: ð35Þ

Roughly speaking, the Schwarz algorithm is an iterative procedure in which we solve, within an iteration

similar problems on each subdomain. The unknowns of such a subproblem are the unknowns of the initial

problem corresponding to its subdomain. The boundary conditions of the problem on a subdomain are of

Dirichlet type: the solution on a subdomain takes on the boundary the values of the solutions on the other

subdomains. By the above decompositions of the domain X, the unknowns inside the domain and those on
the boundary lie in different subdomains. Moreover, since the domain X1 has no unknown on the fault, the

subproblem on X1 becomes a linear one, i.e. we have to solve an algebraic linear system.

In the case of the decomposition with three subdomains, the nonlinear subproblems on X2 and X3 are

decomposed into several small independent problems of two unknowns corresponding to subdomains Oi.

The fact that these nonlinear problems have only two unknowns allows us to use efficient solvers. For the

decomposition with two subdomains, the nonlinear problem on X2 cannot be decoupled in small inde-

pendent subproblems. We have solved this subproblem by the same Schwarz algorithm in which O2; . . . ;OM

is a domain decomposition of X2. In this way, we also arrive to solve nonlinear subproblems of two un-
knowns. Consequently, in the case of the decomposition with two subdomains, the linear system corre-

sponding to X1 is solved only after the convergence over whole X2 is achieved by iterating over all Oiþ1,
Fig. 3. Decomposition of X. Here, domains O3 and O4 have been shaded.
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i ¼ 1; . . . ; nf , many times. In the case of the decomposition with three subdomains, we solve only once the

nonlinear problems on Oi corresponding to X2 and X3, and then we solve the linear algebraic system.

As we already said, in the Schwarz algorithm, the boundary conditions of the solution in a subdomain
are obtained from the values of the solutions in the other subdomains. Consequently, within an iteration,

the solutions on the subdomains Oi which do not intersect each other can be simultaneously found on

parallel computers. Moreover, if the iteration is made in such a way, the convergence rate of the algorithm

does not depend on the number of the subdomains Oi but on the number of the subdomains Xi, i.e. two or

three in the decompositions (35) and (34).

4.2. Multiplicative Schwarz method

We associate to the space W defined in (12) the linear finite element space

W h ¼ fv 2 C0ð�XÞ : vjs 2 P1ðsÞ; s 2 Th; v ¼ 0 on Cdg: ð36Þ

Even if X1 ¼ X, the function subspace associated to X1 will be different from W h,

W h
1 ¼ fv 2 C0ð�XÞ : vjs 2 P1ðsÞ; s 2 Th; v ¼ 0 on oXg: ð37Þ

For the domain decomposition with three subdomains, the subspaces of W h corresponding to the subdo-

mains X2 and X3 will be

W h
2 ¼ fv 2 C0ð�XÞ : vjs 2 P1ðsÞ; s 2 Th; v ¼ 0 in X n X2g;

W h
3 ¼ fv 2 C0ð�XÞ : vjs 2 P1ðsÞ; s 2 Th; v ¼ 0 in X n X3g;

ð38Þ

respectively. The spaces W h and W h
i , i ¼ 1; 2; 3, are considered as subspaces of H 1ðXÞ. We point out that the

subspace W h
1 corresponds to Dirichlet boundary conditions, and the Neumann boundary conditions cor-

responding to the space W h are taken into consideration through the subspaces W h
2 and W h

3 .

The convex set W h
þ corresponding to Wþ defined in (12) is

W h
þ ¼ fv 2 W h : vðxþi Þ � vðx�i ÞP 0; i ¼ 1; . . . ; nf g: ð39Þ

For the decomposition with two subdomains, as in the previous case, the space W h and the convex set W h
þ

are defined in (36) and (39), respectively. Also, the subspaces W h
1 and W h

2 are written as in (37) and (38),

respectively. In the following we shall analyze the complexity and the convergence of the algorithm in both

cases of decomposition of X (34) and (35). We denote by m ¼ 2; 3 the number of subdomains in the de-
composition.

We now assume that we have to solve inequality (22) for a given time step n, and for simplicity we shall

omit the writing of this index, i.e. we shall write simply u instead of unþ1 ¼ _wnþ1. In this way, the finite

element form of the equivalent problems (22) and (23) are written as

u 2 W h
þ :

Z
X
quðv� uÞdxþ

Z
X
cru � rðv� uÞdxþ

Z
C
hð½u�Þð½v� � ½u�ÞdrP F ðv� uÞ for any v 2 W h

þ ;

ð40Þ

and

u 2 W h
þ : JðuÞ6 JðvÞ for any v 2 W h

þ ; ð41Þ

respectively. The proposed algorithm corresponding to the subspaces W h
1 ; . . . ;W

h
m and the convex set W h

þ is

written as a subspace correction method as follows.
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Schwarz algorithm. We start the algorithm with an arbitrary u0 2 W h
þ . At iteration k þ 1, having uk 2 W h

þ ,

kP 0, we compute sequentially for i ¼ 1; . . . ;m, rkþ1
i 2 W h

i satisfying

rkþ1
i ¼ argmin

ukþ
i�1
m þvi2W h

þ
vi2W h

i

GðviÞ with GðviÞ ¼ Jðukþi�1
m þ viÞ; ð42Þ

and then we update

ukþ
i
m ¼ ukþ

i�1
m þ rkþ1

i :

We notice that this algorithm does not assume a decomposition of the convex set W h
þ depending on the

subspaces W h
i . Problem (42) has a unique solution and it also satisfies the variational inequality

rkþ1
i 2 W h

i ; u
kþi�1

m þ rkþ1
i 2 W h

þ : J 0ðukþi�1
m

D
þ rkþ1

i Þ; vi � rkþ1
i

E
P 0 for any vi 2 W h

i ; u
kþi�1

m þ vi 2 W h
þ :

ð43Þ

As we have pointed out, in fact, inequalities (43) corresponding to X1 ¼ O1 become equations, in both cases

m ¼ 3; 2. Consequently, at the iteration k, we have to solve a linear algebraic system having as unknowns

the corrections rkþ1
1 ¼ ðrkþ1ðx1Þ; . . . ; rkþ1ðxndÞÞ at the nodes xi, i ¼ 1; . . . ; nd, of Th which are interior in

X1 ¼ O1.

For m ¼ 3, since the subdomains Oi whose union is either X2 or X3 are disjoint, problem (43) on either X2

or X3 is decomposed in several independent inequalities of two unknowns. We get such an inequality for

each Oiþ1, i ¼ 1; . . . ; nf , and the unknowns are the corrections rkþ1ðxþi Þ and rkþ1ðx�i Þ at the nodes xþi and x�i ,
respectively. The solutions of these inequalities can be found by the following procedures:

(1) We first solve the system of two equations corresponding to the unconstraint minimization, finding
~rkþ1ðxþi Þ and ~rkþ1ðx�i Þ, and then we write ~ukþ

iþ1
M ;þ ¼ ukþ

i
M;þ þ ~rkþ1ðxþi Þ and ~ukþ

iþ1
M ;� ¼ ukþ

i
M;� þ ~rkþ1ðx�i Þ.

(2) If ~ukþ
iþ1
M ;þ � ~ukþ

iþ1
M ;� P 0, we take ukþ

iþ1
M ;þ ¼ ~ukþ

iþ1
M ;þ and ukþ

iþ1
M ;� ¼ ~ukþ

iþ1
M ;� as the approximations at the it-

eration k and in the subdomain Oiþ1, i ¼ 1; . . . ; nf , of uðxþi Þ and uðx�i Þ, respectively.
(3) If ~ukþ

iþ1
M ;þ � ~ukþ

iþ1
M ;� < 0, then the solution of the constraint minimization problem lies on the boundary

of the convex set, i.e., ukþ
i
M;þ þ rkþ1ðxþi Þ ¼ ukþ

i
M;� þ rkþ1ðx�i Þ, and using it, we can find rkþ1ðxþi Þ and

rkþ1ðx�i Þ by solving an unconstraint minimization problem of only one unknown.
As we have already said in the previous subsection, for m ¼ 2, inequality (43) corresponding to X2 contains

as unknowns all the corrections rkþ1ðxþi Þ and rkþ1ðx�i Þ at the nodes xþi and x�i , i ¼ 1; . . . ; nf . These in-

equalities can not be decomposed in smaller independent subproblems and, at a given iteration k, we have
to find the solution simultaneously for all the unknowns corresponding to X2. We have solved this in-

equality by the Schwarz algorithm, too, in which we have considered that O2; . . . ;Onfþ1 is a domain de-

composition of X2. Naturally, the corrections rkþ1ðxþi Þ and rkþ1ðx�i Þ corresponding to the subdomains Oi are

found by the above procedures (1)–(3). In fact, the difference between the cases m ¼ 2 and m ¼ 3 is that in

an iteration, for m ¼ 2, the linear system corresponding to X1 is solved only after the convergence over
whole X2 is achieved by iterating over all Oiþ1, i ¼ 1; . . . ; nf , many times. For m ¼ 3, in an iteration, we

solve only once inequalities (43) corresponding to the subdomains Oiþ1 and then we solve the linear al-

gebraic system.
4.3. Convergence of the method

The convergence of a general Schwarz algorithm for the minimization of convex non-quadratic func-

tionals over a convex set in a reflexive Banach space has been given in [7]. In the case of the finite linear
spaces, an error estimate for this algorithm is given in [9]. Following this result, we have:
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Theorem 4.1. For any initial u0 2 W h
þ , the Schwarz algorithm converges and we have

JðukÞ � JðuÞ6 Ĉ
Ĉþ1

� �k
Jðu0Þ � JðuÞ½ �;

kuk � uk2 6 Ĉþ1
�C

Ĉ
Ĉþ1

� �k
Jðu0Þ � JðuÞ½ �;

ð44Þ

where uk are obtained from Schwarz algorithm at iteration kP 1, and u is the solution of problem (41). The

constants Ĉ and �C are written as

Ĉ ¼ 2b
a
m 1

�
þ 2C0 þ

2b
a
m
C2

0

g

�
1

1� g
; ð45Þ

�C ¼ ð2� gÞa
2ð1� gÞ : ð46Þ

In the above theorem, m ¼ 2; 3 is the number of subdomains, and a and b are the constants in (33) and

(31), respectively. The value of g in the expression of Ĉ and �C can be arbitrary in ð0; 1Þ, but there is an

g0 2 ð0; 1Þ such that Ĉðg0Þ6 ĈðgÞ for any g 2 ð0; 1Þ; this value g0 can be found by solving an algebraic

equation. The constant C0 can be taken of the form

C0 ¼ Cðmþ 1Þ 1

�
þ m� 1

d

�
; ð47Þ

where C is independent of the mesh and domain decomposition parameters.

Since the number m of the subdomains Xi is in fact the number of colors of the domains Oi, in the

qualitative error estimations, it can be considered as depending only on the dimension of the real space in

which the domain X lies, i.e. it is assimilated to a constant (in general, m6 4 for problems in the plane).

However, since the solution of the linear algebraic system corresponding to the subproblem on X1 takes the
most part of the computing time in an iteration, and, as our error estimate shows, the number of iterations

for m ¼ 2 is less than that for m ¼ 3, we shall see in the numerical examples in the next section that the

algorithm with two subdomains is more profitable (from the point of view of the total computing time) than

that one with three subdomains.

The overlap size d of the domain decompositions (34) and (35) is the mesh size h. Consequently, it
follows from above error estimate that the number of iterations to achieve a given error is an increasing

function of 1=h.
Finally, the above theorem shows that the number of iterations is an increasing function of b=a. It

follows from (31) and (33) that b is an increasing function and a is a decreasing one of the time step Dt.
Consequently, the number of iterations to achieve a given error is an increasing function of Dt.

The above remarks concerning the dependence of the convergence rate on the parameters m, h and Dt will
be illustrated in the next section by numerical examples. We mention that, in order to obtain a convergence

rate which is independent of the mesh and domain decomposition parameters, a two- or multi-level Schwarz

method (see [9]) can be applied to solve problem (41). This will be done in a subsequent paper.
5. Numerical results

The numerical results described hereafter have been chosen to reveal the characteristics of the method.

Hence, the equations are handled in a non-dimensional formulation, with the rigidity G, the density q and

the half-length of each fault segment all equal to 1. No unit is mentioned in the first two subsections. Only

in the last one, where a more realistic application is considered, physical parameters have been chosen to fit



500 L. Badea et al. / Journal of Computational Physics 201 (2004) 487–510
typical seismological scaling. Numerical simulations were performed using a single processor IBM RS/6000

SP Power 3-II (375 MHz). In all these simulations, �X is a square and C is a set of parallel planar cuts. The

friction coefficient is piecewise linear, as suggested in (5), with Dc, S, ls and ld constant on C. We recall
from [20] that the stability of the system is characterized by the slope of the friction law,

b ¼ S½ðls � ldÞ=2Dc�, and the fault geometry.

In the considered examples, the initial state is an unstable equilibrium position (w � 0 with q ¼ �Sls)

perturbed by a small velocity impulse (i.e. w0 � 0, jw1j � 1). That means that the fault is at the rupture

level everywhere at the initial time. The choice of this condition is motivated by two reasons. The first one

is physical: we want to describe the unstable evolution of the slip near an equilibrium position. Therefore

we must suppose that there exists a large enough zone on the fault where the critical strength has been

reached, or will be reached in a quasi-static process. Note that the universal nucleation length for rupture
instability obtained in [51] under non-uniform loading is the same that the one obtained in [21] under

uniform loading. The second reason is technical: we want to point out the ability of the method in the

instability capturing during the initiation phase. That is why, if the initial stress level is not at the failure

level, then we need a initial perturbation w1 with a large amplitude (of order of the slipping rate during

the rupture propagation) which implies that the nucleation phase is not observed in the computed process.

However, we expect qualitatively the same behavior if the fault is at an initial stress level slightly below

the failure level.

The shape and location of this perturbation has no influence on the behavior of the unstable solution.
However, for computational reasons, we chose it as a continuous function on X having a small support in

the neighborhood of the fault system. The time step is chosen to satisfy (29), hence the domain decom-

position method exposed in Section 4 converges at each time iteration. In this section, we denote by _wn
k the

velocity at time nDt obtained after k Schwarz iterations. As for the stopping criterion of the iterative al-

gorithm, it reads

k _wn
kþ1 � _wn

kk2
k _wn

kþ1k2
6 e:

We chose e ¼ 10�4 in all the following numerical tests.

For the sake of simplicity, the numerical examples presented in this paper concern parallel plane faults.

Note that, since we use triangular meshes, the method can be applied to any system of curved faults without

any difficulty.

5.1. Convergence tests for a single time step

In order to discriminate numerical errors due to the time discretization scheme from errors due to
Schwarz algorithm, we first focus on the case of a single time step. In all our convergence tests, we have

taken C ¼ ½�1; 1� � f0g, X ¼ ½�2; 2�2 n C and b ¼ 1:4. Let us remark that, since b is larger than the stability

limit of a single fault b0 ¼ 1:15777 . . . (see [21,51]), the equilibrium is unstable. Hence, we deal with an

exponential growth of the perturbation, which is here prescribed at t ¼ 0 as a velocity jump w1 on the fault.

Since we are investigating in this subsection the behavior of the solution after a single time step, we consider

here a perturbation having a quite large support, taking the form of two half-Gaussians of (large) width l
and amplitude A, and applied at t ¼ 0 at point ð0; 0Þ:

w1ðx1; x2Þ ¼ A exp
x21 þ x22
l2

� �
if x2 > 0

¼ �A exp
x21 þ x22
l2

� �
if x2 < 0:
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5.1.1. Influence of the mesh size

Computations were performed on five regular meshes described in Table 1, with Dt ¼ 0:5. Since the

mesh is regular we have taken, in this table, the length of the smallest edge instead of the usual mesh size
definition.

Both decomposition methods (m ¼ 2 and m ¼ 3) have been tested. The number of iterations required to

achieve the prescribed accuracy (e ¼ 10�4) on each mesh are presented on Table 1. The first method (m ¼ 2)

requires 20–30% Schwarz iterations less. At each iteration, the intermediary convergence on X2 requires a

few iterations more (from 1 up to 8), but the computational cost of these additional calculations is neg-

ligible, so that the running time is also 20–30% smaller in the case m ¼ 2. Hence, in the following, the

convergence tests only concern this method.

The initial perturbation is plotted for the finest mesh (mesh 5) in Fig. 4 (left). The right part of Fig 4
shows the slip rate profile on the fault obtained after one time step, at t ¼ 0:5, i.e. ½ _wð0:5; x1; 0Þ�, x1 2 ½�1; 1�,
for each of the five meshes of Table 1.

We remark that the numerical solutions are very close for meshes 3–5, which illustrates that the con-

vergence to the continuum solution is achieved. But in terms of computation time, a very large number of

nodes is expensive, as shown on Fig. 5. The number of required iterations is almost proportional to the

number of nodes on C (as expected from the theoretical estimates of previous section), whereas the com-

putation time of each iteration is governed by the total number of nodes. Since we are mainly interested in

computing accurate approximations of the displacement and stress fields in the neighborhood of the fault,
for numerical simulations involving a large number of time steps, non-regular meshes have to be used. In

this way, the discretization should be fine on and around the fault, so that the local velocity distribution is

well approached, but the discretization away from the fault should be coarser to reduce running times.

5.1.2. Repartition of the error

On mesh 4, Schwarz algorithm requires 27 iterations to achieve the prescribed accuracy (e ¼ 10�4). The

local error, defined by

ð _w1
kþ1ðxþ1 ; 0Þ � _w1

kðxþ1 ; 0ÞÞ
2

_w1
kþ1ðxþ1 ; 0Þ

2
þ
ð _w1

kþ1ðx�1 ; 0Þ � _w1
kðx�1 ; 0ÞÞ

2

_w1
kþ1ðx�1 ; 0Þ

2
; x1 2� � 1; 1½;

was computed at each iteration: it concentrates on the fault, and particularly in the neighborhood of its tips

(end points), where _w tends to zero. It is plotted on Fig. 6 for iterations 2, 13 and 27.

Note that no error value is given at the fault tips, since _wnþ1ð	1; 0Þ ¼ 0. The maximal local error is about

10�1 at iteration 2, about 10�3 at iteration 13, and finally about 10�4 at iteration 27. As expected, the

relative local error is maximal at the fault tips, due to singularities of the exact solution and due to the fact

that _w1
kþ1 tends to zero. In conclusion, the approximation is satisfactory along the fault, but the error due to

singularities ought to be handled by other discretization techniques.
Table 1

Convergence tests for the Schwarz method with 2 and 3 subdomains

Mesh Mesh size

(h)
Number of

nodes

Number of edges

on the fault

Number of iterations

m ¼ 2 m ¼ 3

1 0.5 90 4 4 5

2 0.2 490 10 8 11

3 0.1 1858 20 13 19

4 0.05 7240 40 27 36

5 0.025 29459 80 50 65
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5.1.3. Influence of the time step

The dependence of the convergence rate on the time step size has been tested using mesh 4. As stated at

the end of previous section, the number of iterations is expected to be an increasing function of the time

step. One can see on Fig. 7 that this was confirmed by the numerical experiments, since the number of

iterations is almost proportional to Dt.
When simulating the evolution of the system for a long period of time, a small value of Dt would

guarantee a small number of iterations per time step. But the total computation time is also proportional to
the total number of time steps, hence inversely proportional to Dt. In conclusion, the optimal value of Dt
depends on the whole evolution process. This point will be discussed later.
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5.2. Convergence in time

To get a numerical simulation on the time interval ½0; T � with T ¼ 5, computations on several successive
time steps were performed on a heterogeneous mesh, with 6996 nodes and 40 edges on the fault. As it

follows from Fig. 4, this mesh is fine enough to give a satisfactory approximation of the solution around the

fault. A small velocity perturbation (a Gaussian with small width l and small amplitude A) is applied at

t ¼ 0 at the fault center:

w1ðx1; x2Þ ¼ A exp
x21 þ x22
l2

� �
:

The evolution of the system is observed for 6 different values of Dt: 0.5, 0.2, 0.1, 0.05, 0.02 and 0.01. The

friction parameter is b ¼ 3:0.
Here, we aim at showing that our numerical method is able to handle exponentially growing solutions,

such as the characteristic solution of the initiation phase of earthquakes. For this purpose, the critical slip

Dc was taken infinite. This remark is important to understand the huge values of slip rate that we obtain.
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5.2.1. Instability capturing

Fig. 8 shows the evolution of the logarithm of the slip rate at fault center, i.e. t ! logð½ _wðt; 0; 0Þ�Þ. The
evolution is fast (due to the large value of b, here 3.0), and the slip rate at fault center is exponentially
growing. The linear shape of t ! logð½ _wðt; 0; 0Þ�Þ is expected during the initiation phase of instabilities (e.g.

[21]). Indeed, _wðtÞ ’ Const ea0tU0, where a0, U0 are the first eigenvalue and eigenfunction of problem

(24), (25). The three smallest time steps (Dt ¼ 0:05, Dt ¼ 0:02 and Dt ¼ 0:01) lead to quasi-identical profiles.

This shows that the numerical algorithm based on Newmark time scheme and Schwarz method is efficient

in capturing time instabilities, when the solution has an exponential time growth. Indeed, the Newmark

scheme with parameters b ¼ 1=4, c ¼ 1=2, also called average acceleration method, is known to be un-

conditionally stable and non-dissipative. It only leads to some dispersion for large time steps.

5.2.2. Energy conservation

Fig. 9 investigates the energy dissipation of the numerical algorithm. The test consists in considering the

evolution of the sum of potential energy, kinetic energy and frictional energy, i.e.

EðtÞ ¼ EcðtÞ þ EpðtÞ þ EwðtÞ ¼
Z
X
qð _wðtÞ2 � w2

1Þdxþ
Z
X
GjrwðtÞ2jdx�

Z
C
F ð½wðtÞ�Þdr;

where F is the antiderivative of f . On Fig. 9, E is renormalized by the final value of Ec þ Ep. Theoretically,

E should be constant. We remark that the numerical scheme is strongly conservative: the normalized final
value of E is smaller than the error criterion e ¼ 10�4 multiplied by the number of time steps. Hence,

Schwarz method is dissipative, but this dissipation can be controlled by the choice of the error criterion.

5.2.3. Optimal time step

The time step is a very important parameter, not only in terms of stability and accuracy of the solution,

but also in terms of computation time. Concerning the accuracy, the above results imply that any time step

smaller than or equal to 0.05 gives satisfactory approximations. Running times of these computations are

plotted on Fig. 10. Obviously, they are governed by the total number of Schwarz iterations needed to
compute the entire period of time ½0; 5s�. Indeed, a small value of Dt would imply a large number of time

steps, but the corresponding number of Schwarz iterations at each time step is small (see the previous
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efficient in capturing unstable solutions (with an exponential growth in time).
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subsection). For Dt < 0:05, the average number of Schwarz iterations is approximately the same, 4, so that

computation times blow up for small time steps. Then, the average number of Schwarz iterations is 4 for

Dt ¼ 0:05 (100 time steps), 7 for Dt ¼ 0:1 (50 time steps), 18 for Dt ¼ 0:2 (25 time steps), so that the total

number of iterations is almost the same, approximately 400. Finally, for Dt ¼ 0:5, the average number of

iterations is 90, so that the computation time is much larger. Hence, the optimal time step to minimize

computation times is between 0.05 and 0.2. Since, as far as accuracy is concerned, it should not exceed 0.05,

then in this particular case (irregular mesh with the smallest edge size equal to 0.05), the optimal value
seems to be Dt ¼ 0:05.

5.3. Application to interacting parallel fault segments

Rupture change, delays and/or arrest due to stress interaction on parallel or perpendicular fault segments

have been investigated a lot in the last decade. In [29–33,42], spontaneous dynamic rupture is modeled using
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Fig. 10. Graph of the computation time of a simulation in the time period T ¼ 5 plotted against Dt.
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finite difference schemes and slip weakening friction. In [55], a critical strain fracture criterion is used to

investigate small-scale crack interaction. However in these works, the simultaneous nucleation of rupture

(weakening process) on non-coplanar interacting faults is never considered. We want to point out in this
subsection that the method presented in this paper fully handles this complex situation, where the weak-

ening process strongly interacts with fault segmentation.

We investigate here the rupture nucleation and propagation on two interacting parallel faults C1 and C2

represented in Fig. 11. The parameters are chosen to be physically relevant: q ¼ 2800 kg/m3, c ¼ 3 km/s and

Dc ¼ 0:5 m. We deduce G ¼ 25:2 GPa and a typical strength drop Sðls � ldÞ ¼ 5:04 MPa. The two parallel

fault segments are C1 ¼ ½�15 km; 5 km� � f�1 kmg and C2 ¼ ½�5 km; 15 km� � f1 kmg. We chose

X ¼ ½�50 km; 50 km�2 n C1 n C2, b ¼ 2:0 and Dt ¼ 0:09 s. The mesh has 6938 nodes, and 66 edges on each

fault. A velocity perturbation (a gaussian with width l and amplitude A) is applied at t ¼ 0 at an arbitrary
point, here ðx01; x02Þ ¼ ð1 km; 0 kmÞ:
Γ1

2Γ

Fig. 11. Geometry of the two-faults system.

Fig. 12. Slip rate evolution on two interacting parallel faults (left: C1, right: C2).



Fig. 13. Evolution of the velocity field on two interacting parallel faults.
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w1ðx1; x2Þ ¼ A exp
ðx1 � x01Þ

2 þ ðx2 � x02Þ
2

l2

 !
:

Also, we chose l ¼ 2 km together with a quite large value of the amplitude A ¼ 0:05 m/s, so that the

simulation can rapidly show both the initiation and rupture phases in a short period of time.

Fig. 12 displays the evolution of the velocity jump on the fault system, for 0 s6 t6 18 s. On Fig. 13, one

can see the entire velocity field for different values of t between 0.09 and 16.2 s. Note that the exterior

boundary is not visible on Fig. 13. Since no absorbing boundary condition is used, there are some artificial
reflections, but they do not reach the faults during the modeled time period.

The perturbation propagates in the elastic medium and first reaches C2. It propagates along C2 and is

finally reflected by the fault tips. Slip occurs rapidly on the entire fault segment. On C1, once the pertur-

bation has propagated from the right tip to the left one, we can see a reflected wave coming from the left tip

of C2. Slip also initiates on C1 is also perturbed, but the previous slip event on C2 has already induced a

stress drop on its neighborhood. A significant part of C1 is inhibited for a while, because the static friction

level cannot be overcome. Such interaction between the fault segments is responsible for the asymmetric

velocity profile of C1 during the initiation, with a single stress singularity and a locked zone (stress shadow).
The characteristic global initiation pattern dominates on snapshots 3 and 4, with the slip rate growing

exponentially, such that the remaining waves cannot be seen any longer. As the slip grows exponentially, it

finally reaches the critical value 2Dc, close to the center of C2, which is the condition for the beginning of

rupture propagation (snapshot 5). Because of the shadow zone created by the slip on C2, rupture is delayed

on C1 and will be forced to propagate backwards on the inhibited part (snapshots 7 and 8), once the critical

slip value is reached at some point of the ‘‘initiated’’ part.

This example shows that, if an initiation process (a precursory slip) occurs on a fault system, it signif-

icantly modifies the conditions under which the rupture will propagate: one of the faults is partly locked,
which breaks the geometrical symmetry, and the locked part can break later, with a local directivity which

is opposed to the global rupture directivity. Although this mechanism has been noticed about rupture, we

show here that it can take place at a very early stage of the rupture process, i.e. during initiation or pre-

cursory slip, which is a regime in-between statics and strong dynamics.
6. Conclusion

We have presented in this paper a numerical method able to capture exponentially growing solutions of a

wave propagation problem with slip-dependent interface conditions on a system of faults with complex

geometry. Convergence is achieved for time steps quite larger than the usual CFL limit. Numerical tests

show that the method is unconditionnally stable, with some numerical dissipation that can be controled by

the error criterion of the iterative process. The number of Schwarz iterations is an increasing function of

both the time step and the mesh size (a multilevel Schwarz method could make the number of iterations

independent of the mesh size). The application of this method to a system of two simultaneously nucleating

faults shows that the numerical scheme is able to handle complex expressions of fault interaction, i.e. both
shadow zones and stress singularities.
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